Quantcast
Channel: SCN : Document List - ABAP Development
Viewing all articles
Browse latest Browse all 935

ABAP 7.40 Quick Reference

$
0
0

So you're an experienced ABAP programmer wanting to leverage off the fantastic new functionality available to you in ABAP 7.40!

 

However, searching for information on this topic leads you to fragmented pages or blogs that refer to only a couple of the new features available to you.

What you need is a quick reference guide which gives you the essentials you need and shows you how the code you are familiar with can be improved with ABAP 7.40.

 

The below document contains exactly this!

 

It gives examples of "classic" ABAP and its 740 equivalent. It goes into more details on the more difficult topics normally via examples. This allows the reader to dive in to the level they desire. While this document does not contain everything pertaining to ABAP 740 it certainly covers the most useful parts in the experience of the author.

 

The document has been compiled by drawing on existing material available online as well as trial and error by the author. In particular the blogs by Horst Keller have been useful and are the best reference I have found (prior to this document ). He has a landing page of sorts for his various blogs on the topic here:

ABAP Language News for Release 7.40

 

Credit also goes to Naimesh Patel for his useful explanations and examples on ABAP 7.40. Here is his example of the "FOR iteration expression" which I leaned on (links to his other 740 articles can be found at the bottom of the link):

http://zevolving.com/2015/05/abap-740-for-iteration-expression/

 

I compiled the below document to make the transition to using ABAP 740 easier for myself and my project team. It has worked well for us and I hope it will do the same for you.

 

Regards,

Jeff Towell

 

 

ABAP 7.40 Quick Reference  

 

 

Author:

Jeffrey Towell

Created:

2015

 

Contents

 

1. Inline Declarations

2. Table Expressions

3. Conversion Operator CONV

     I.  Definition.

     II. Example.

4. Value Operator VALUE

     I.   Definition.

     II.  Example for structures.

     III. Examples for internal tables.

5. FOR operator

     I.   Definition.

     II.  Explanation.

     III. Example 1.

     IV. Example 2.

     V. FOR with THEN and UNTIL|WHILE.

6. Reduce

     I.   Definition.

     II.  Note.

     III. Example 1.

     IV. Example 2.

     V.  Example 3.

7. Conditional operators COND and SWITCH

     I.   Definition.

     II.  Example for COND.

     III. Example for SWITCH.

8.Strings

     I.   String Templates.

     II.  Concatenation.

     III. Width/Alignment/Padding.

     IV. Case.

     V.  ALPHA conversion.

     VI.  Date conversion.

9. Classes/Methods

     I.   Referencing fields within returned structures.

     II.  Methods that return a type BOOLEAN.

     III. NEW operator

10. Meshes

     I.   Problem.

     II.  Solution.

     III. Output

11. Filter

     I.   Definition.

     II.  Problem.

     III. Solution.

 

1. Inline Declarations

 

Description

Before 7.40

With 7.40

Data statement

DATA text TYPE string.
text = `ABC`.

DATA(text)=`ABC`.

Loop at into work area

DATA wa like LINE OF itab.
LOOP AT itab
INTO wa.  
  ...
ENDLOOP.

LOOP AT itab INTO DATA(wa).  
  ...
ENDLOOP
.

Call method

DATA a1 TYPE ...

DATA a2 TYPE ...

oref->meth( IMPORTING p1 = a1

            IMPORTING p2 = a2

          ).

oref->meth(

        IMPORTING p1 = DATA(a1)

        IMPORTING p2 = DATA(a2)).

Loop at assigning

FIELD-SYMBOLS: <line> type …

LOOP AT itab ASSIGNING <line>.

  ...

ENDLOOP.

LOOP AT itab

   ASSIGNING FIELD-SYMBOL(<line>).
   ...
ENDLOOP.

Read assigning

FIELD-SYMBOLS: <line> type …

READ TABLE itab

           ASSIGNING <line>.

READ TABLE itab

   ASSIGNING FIELD-SYMBOL(<line>).

Select into

table

DATA itab TYPE TABLE OF dbtab.

SELECT * FROM dbtab

   INTO TABLE itab

        WHERE fld1 = lv_fld1.

SELECT * FROM dbtab

   INTO TABLE DATA(itab) 

        WHERE fld1 = @lv_fld1.

Select single

into

SELECT SINGLE f1 f2 

  FROM dbtab

  INTO (lv_f1, lv_f2)

WHERE ...

WRITE: / lv_f1, lv_f2.

SELECT SINGLE f1 AS my_f1,

              F2 AS abc  

         FROM dbtab

         INTO @DATA(ls_str) "struc

        WHERE ...

WRITE: / ls_str-my_f1, ls_str-abc.

 

 

 

2. Table Expressions

If a table line is not found, the exception CX_SY_ITAB_LINE_NOT_FOUND is raised. No sy-subrc.


Description

Before 7.40

With 7.40

Read Table  index

READ TABLE itab INDEX idx

      INTO wa.

wa = itab[ idx ].

Read Table  using key

READ TABLE itab INDEX idx

     USING KEY key

      INTO wa.

wa = itab[ KEY key INDEX idx ].

Read Table  with key

READ TABLE itab

  WITH KEY col1 =

           col2 =

       INTO wa.

wa = itab[ col1 = col2 = ].

Read Table  with key components

READ TABLE itab

      WITH TABLE KEY key

COMPONENTS col1 =

           col2 =

      INTO wa.

wa = itab[ KEY key col1 =

                    col2 = ].

Does record exist?

READ TABLE itab ...

    TRANSPORTING NO FIELDS.

IF sy-subrc = 0.

  ...

ENDIF.

IF line_exists( itab[ ... ] ).

...

ENDIF.

Get table index

DATA idx type sy-tabix.

READ TABLE ...

  TRANSPORTING NO FIELDS.

  idx = sy-tabix.

DATA(idx) =

       line_index( itab[ ... ] ).

 

NB: There will be a short dump if you use an inline expression that references a non-existent record.

        SAP says you should therefore assign a field symbol and check sy-subrc.

 

ASSIGN lt_tab[ 1 ] to FIELD-SYMBOL(<ls_tab>).
IF sy-subrc = 0.
...

ENDIF.


NB: Use itab [ table_line = … ] for untyped tables.


 

3. Conversion Operator CONV

I.  Definition

CONV dtype|#( ... )

dtype = Type you want to convert to (explicit)

#     = compiler must use the context to decide the type to convert to (implicit)


II. Example

Methodcl_abap_codepage=>convert_toexpects a string

Before 7.40

DATA text TYPE c LENGTH 255.

DATA helper TYPE string.

DATA xstr   TYPE xstring.

 

helper = text.

xstr = cl_abap_codepage=>convert_to( source = helper ).

With 7.40

DATA text TYPE c LENGTH 255.

 

DATA(xstr) = cl_abap_codepage=>convert_to( source =CONV string( text )).

OR

DATA(xstr) = cl_abap_codepage=>convert_to( source =CONV #( text )).

 

 

 

4. Value Operator VALUE

I. Definition

     Variables:    VALUE dtype|#( )

     Structures:  VALUE dtype|#( comp1 = a1 comp2 = a2 ... )

     Tables:         VALUE dtype|#( ( ... ) ( ... ) ... ) ...

 

II. Example for structures

     TYPES:  BEGIN OF ty_columns1,“Simple structure
                     cols1 TYPE i,
                     cols2 TYPE i,
                   END OF ty_columns1.

      TYPES: BEGIN OF ty_columnns2,  “Nested structure
                     coln1 TYPE i,
                     coln2 TYPE ty_columns1,
                  END OF ty_columns2.

      DATA: struc_simple TYPE ty_columns1,
                struc_nest    TYPE ty_columns2.

 

     struct_nest   = VALUE t_struct(coln1 = 1
                                                  coln2-cols1 = 1
                                                  coln2-cols2 = 2 ).


     OR


     struct_nest   = VALUE t_struct(coln1 = 1
                                                   coln2 = VALUE #( cols1 = 1

                                                   cols2 = 2 ) ).


III. Examples for internal tables

Elementary line type:

 

TYPES t_itab TYPE TABLE OF i WITH EMPTY KEY.

DATA itab TYPE t_itab.

itab = VALUE #( ( ) ( 1 ) ( 2 ) ).

 

Structured line type (RANGEStable):

 

DATA itab TYPE RANGE OF i.

itab = VALUE #( sign = 'I'  option = 'BT' ( low = 1  high = 10 )
( low = 21 high = 30 )
( low = 41 high = 50 )
option = 'GE' ( low = 61 )  ).


 

5. FOR operator

I. Definition

     FOR wa|<fs> IN itab [INDEX INTO idx] [cond]

 

II. Explanation

This effectively causes a loop at itab. For each loop the row read is assigned to a work area (wa) or field-symbol(<fs>).

This wa or <fs> is local to the expression i.e. if declared in a subrourine the variable wa or <fs> is a local variable of

that subroutine. Index like SY-TABIX in loop.

Given: 

TYPES: BEGIN OF ty_ship,
           tknum
TYPE tknum,     "Shipment Number
           name 
TYPE ernam,     "Name of Person who Created the Object
           city 
TYPE ort01,     "Starting city
           route
TYPE route,     "Shipment route
      
END OF ty_ship.
TYPES: ty_ships TYPE SORTED TABLE OF ty_ship WITH UNIQUE KEY tknum.
TYPES: ty_citys TYPE STANDARD TABLE OF ort01 WITH EMPTY KEY.

 

GT_SHIPStypety_ships. -> has been populated as follows:

RowTKNUM[C(10)]Name[C(12)]City[C(25)]Route[C(6)]
1001JohnMelbourneR0001
2002GavinSydneyR0003
3003LucyAdelaideR0001
4004ElainePerthR0003

 

 

 

III. Example 1

Populate internal table GT_CITYS with the cities from GT_SHIPS.

Before 7.40

  DATA: gt_citys TYPE ty_citys,
       gs_ship 
TYPE ty_ship,
       gs_city 
TYPE ort01.

LOOP AT gt_ships INTO gs_ship.
  gs_city
gs_ship-city.
  APPEND gs_city TO gt_citys.
ENDLOOP.

With 7.40

DATA(gt_citys) = VALUE ty_citys( FOR ls_ship IN gt_ships ( ls_ship-city ) ).

 

IV. Example 2

Populate internal table GT_CITYS with the cities from GT_SHIPS where the route is R0001.


Before 7.40

  DATA: gt_citys TYPE ty_citys,
       gs_ship 
TYPE ty_ship,
       gs_city 
TYPE ort01.

LOOP AT gt_ships INTO gs_ship WHERE route = 'R0001'.
  gs_city
gs_ship-city.
  APPEND gs_city TO gt_citys.
ENDLOOP.

With 7.40

DATA(gt_citys) = VALUE ty_citys( FOR ls_ship IN gt_ships

                               WHERE ( route = 'R0001' ) ( ls_ship-city ) ).

Note: ls_ship does not appear to have been declared but it is declared implicitly.


V. FOR with THEN and UNTIL|WHILE

FOR i = ... [THEN expr] UNTIL|WHILE log_exp

Populate an internal table as follows:

TYPES:
  BEGIN OF ty_line,
    col1 TYPE i,
    col2 TYPE i,
    col3 TYPE i,
  END OF ty_line,
  ty_tab TYPE STANDARD TABLE OF ty_line WITH EMPTY KEY.

Before 7.40

DATA: gt_itab TYPE ty_tab,
      j      
TYPE i.
FIELD-SYMBOLS <ls_tab> TYPE ty_line.

j
= 1.
DO.
j
= j + 10.
IF j > 40. EXIT. ENDIF.
APPEND INITIAL LINE TO gt_itab ASSIGNING <ls_tab>.
<ls_tab>
-col1 = j.
<ls_tab>
-col2 = j + 1.
<ls_tab>
-col3 = j + 2.
ENDDO.

With 7.40

DATA(gt_itab) = VALUE ty_tab( FOR j = 11 THEN j + 10 UNTIL j > 40
                            ( col1 = j col2 = j + 1 col3 = j + ) ).

 

6. Reduce

I. Definition

... REDUCE type(

INIT result = start_value

           ...

FOR for_exp1

FOR for_exp2

...

NEXT ...

           result = iterated_value

... )

 

II. Note

     While VALUE and NEW expressions can include FOR expressions, REDUCE must include at least one FOR expression. You can use all kinds      of FOR expressions in REDUCE:

  • with IN for iterating internal tables
  • with UNTIL or WHILE for conditional iterations

III. Example 1

Count lines of table that meet a condition (field F1 contains “XYZ”).

Before 7.40

DATA: lv_lines TYPE i.

LOOP AT gt_itab INTO ls_itab where F1 = ‘XYZ’.
  lv_
lines= lv_lines + 1.
ENDLOOP.

With 7.40

DATA(lv_lines) = REDUCE i( INIT x = 0 FOR wa IN gt_itab

                    Where( F1 = ‘XYZ’ ) NEXT x = x + 1 ).

 

IV. Example 2

Sum the values 1 to 10 stored in the column of a table defined as follows

DATA gt_itab TYPE STANDARD TABLE OF i WITH EMPTY KEY.
gt_itab
= VALUE #( FOR j = 1 WHILE j <= 10 ( j ) ).

Before 7.40

DATA: lv_line TYPE i,
      lv_sum 
TYPE i.

 

LOOP AT gt_itab INTO lv_line.
  lv_sum
= lv_sum + lv_line.
ENDLOOP.

With 7.40

DATA(lv_sum) = REDUCE i( INIT x = 0 FOR wa IN itab NEXT x = x + wa ).

V. Example 3

Using a class reference - works because “write” method returns reference to instance object

With 7.40

TYPES outref TYPE REF TO if_demo_output.

DATA(output) = REDUCE outref( INIT out  = cl_demo_output=>new( )
                              text
= `Count up:`
                              FOR n = 1 UNTIL n > 11
                              NEXT out = out->write( text )
                              text
= |{ n }| ).

output->display( ).

 

 

7. Conditional operators COND and SWITCH

I. Definition

... COND dtype|#( WHEN log_exp1 THEN result1
[ WHEN log_exp2 THEN result2 ]
...
[ ELSE resultn ] ) ...

 

... SWITCH dtype|#( operand
WHEN const1 THEN result1
[ WHEN const2 THEN result2 ]
...
[ ELSE resultn ] ) ...

 

II. Example for COND

DATA(time) =

  COND string(

    WHEN sy-timlo < '120000' THEN

      |{ sy-timlo TIME = ISO } AM|

    WHEN sy-timlo > '120000' THEN

      |{ CONV t( sy-timlo - 12 * 3600 )

TIME = ISO } PM|

    WHEN sy-timlo = '120000' THEN

      |High Noon|

    ELSE

      THROW cx_cant_be( ) ).

 

III. Example for SWITCH

DATA(text) =
NEW class( )->meth(
                     SWITCH #( sy-langu
                              WHEN 'D' THEN `DE`
                              WHEN 'E' THEN `EN`
                               ELSE THROW cx_langu_not_supported( ) ) ).

 

 

8. Strings

I. String Templates

A string template is enclosed by two characters "|" and creates a character string.

Literal text consists of all characters that are not in braces {}. The braces can contain:

  • data objects,
  • calculation expressions,
  • constructor expressions,
  • table expressions,
  • predefined functions, or
  • functional methodsand method chainings

 

Before 7.40

DATA itab TYPE TABLE OF scarr.
SELECT * FROM scarr INTO TABLE itab.

DATA wa LIKE LINE OF itab.
READ TABLE itab WITH KEY carrid = 'LH' INTO wa.

DATA output TYPE string.
CONCATENATE 'Carrier:' wa-carrname INTO output SEPARATED BY space.

cl_demo_output=>display( output ).

With 7.40

SELECT * FROM scarr INTO TABLE @DATA(lt_scarr).
cl_demo_output
=>display( |Carrier: { lt_scarr[ carrid = 'LH' ]-carrname }|                                                                         ).

 

II. Concatenation

Before 7.40

DATA lv_output TYPE string.
CONCATENATE
'Hello' 'world' INTO lv_output SEPARATED BY space.

With 7.40

DATA(lv_out) = |Hello| & | | & |world|.

 

III. Width/Alignment/Padding

WRITE / |{ 'Left'     WIDTH = 20 ALIGN = LEFT   PAD = '0' }|.
WRITE / |{ 'Centre'   WIDTH = 20 ALIGN = CENTER PAD = '0' }|.
WRITE / |{ 'Right'    WIDTH = 20 ALIGN = RIGHT  PAD = '0' }|.

 

IV. Case

WRITE / |{ 'Text' CASE = (cl_abap_format=>c_raw) }|.
WRITE / |{ 'Text' CASE = (cl_abap_format=>c_upper) }|.
WRITE / |{ 'Text' CASE = (cl_abap_format=>c_lower) }|.

 

V. ALPHA conversion

DATA(lv_vbeln) = '0000012345'.
WRITE / |{ lv_vbeln  ALPHA = OUT }|.     “or use ALPHA = IN to go in other direction

 

VI. Date conversion

WRITE / |{ pa_date DATE = ISO }|.           “Date Format YYYY-MM-DD
WRITE / |{ pa_date DATE = User }|.          “As per user settings
WRITE / |{ pa_date DATE = Environment }|.   “Formatting setting of language environment

9. Classes/Methods

I. Referencing fields within returned structures

Before 7.40

DATA: ls_lfa1  TYPE lfa1,
      lv_name1
TYPE lfa1-name1.

ls_lfa1 
= My_Class=>get_lfa1( ).
lv_name1
= ls_lfa1-name1.

With 7.40

DATA(lv_name1) = My_Class=>get_lfa1( )-name1.

 

II. Methods that return a type BOOLEAN

Before 7.40

IF My_Class=>return_boolean( ) = abap_true.

ENDIF.

With 7.40

IF My_Class=>return_boolean( ).

ENDIF.

NB: The type “BOOLEAN” is not a true Boolean but a char1 with allowed values X,- and <blank>.

       Using type “FLAG” or “WDY_BOOLEAN” works just as well.

 

 

III. NEW operator

This operator can be used to instantiate an object.

Before 7.40

DATA: lo_delivs TYPE REF TO zcl_sd_delivs,

            lo_deliv  TYPE REF TO zcl_sd_deliv.

CREATE OBJECT lo_delivs.
CREATE OBJECT lo_deliv.

lo_deliv = lo_delivs->get_deliv( lv_vbeln ).

With 7.40

DATA(lo_deliv) = new zcl_sd_delivs( )->get_deliv( lv_vbeln ).

 

 

10. Meshes

Allows an association to be set up between related data groups.


I. Problem

Given the following 2 internal tables:

TYPES: BEGIN OF t_manager,
name  
TYPE char10,
salary
TYPE int4,
END OF t_manager,
tt_manager
TYPE SORTED TABLE OF t_manager WITH UNIQUE KEY name.

TYPES: BEGIN OF t_developer,
name   
TYPE char10,
salary 
TYPE int4,
manager
TYPE char10,   "Name of manager
END OF t_developer,
tt_developer
TYPE SORTED TABLE OF t_developer WITH UNIQUE KEY name.


Populated as follows:

RowName[C(10)]Salary[I(4)]
1Jason3000
2Thomas3200
Row
Name[C(10)]

Salary[I(4)Manager[C(10)]
1Bob2100Jason
2David2000Thomas
3Jack1000Thomas
4Jerry1000Jason
5John2100Thomas
6Tom2000Jason

Get the details of Jerry’s manager and all developers managed by Thomas.

 

 

II. Solution

With 7.40

TYPES: BEGIN OF MESH m_team,
         managers  
TYPE tt_manager  ASSOCIATION my_employee TO developers

                                                            ON manager = name,
         developers
TYPE tt_developer ASSOCIATION my_manager TO managers  

                                                            ON name = manager,
       END OF MESH m_team.

DATA: ls_team TYPE m_team.
ls_team
-managers   = lt_manager.
ls_team
-developers = lt_developer.

*Get details of Jerry's manager *

"get line of dev table

ASSIGN lt_developer[ name = 'Jerry' ] TO FIELD-SYMBOL(<ls_jerry>).
DATA(ls_jmanager) =  ls_team-developers\my_manager[ jerry ].

WRITE: / |Jerry's manager: { ls_jmanager-name }|,30

                  |Salary: { ls_jmanager-salary }|.


"Get Thomas' developers
SKIP.
WRITE: / |Thomas' developers:|.

 

"line of manager table

ASSIGN lt_manager[ name = 'Thomas' ] TO FIELD-SYMBOL(<ls_thomas>).
LOOP AT ls_team-managers\my_employee[ thomas ]     

        ASSIGNING FIELD-SYMBOL(<ls_emp>).

  WRITE: / |Employee name: { <ls_emp>-name }|.
ENDLOOP.

III. Output

     Jerry's manager: Jason          Salary: 3000

 

     Thomas' developers:

     Employee name: David

     Employee name: Jack

     Employee name: John

 

 

11. Filter

Filter the records in a table based on records in another table.


I. Definition

... FILTER type( itab [EXCEPT] [IN ftab] [USING KEY keyname]
           WHERE c1 op f1 [AND c2 op f2 [...]] )

 

II. Problem

Filter an internal table of Flight Schedules (SPFLI) to only those flights based on a filter table that contains the fields Cityfrom and CityTo.

 

III. Solution

With 7.40

TYPES: BEGIN OF ty_filter,
         cityfrom
TYPE spfli-cityfrom,
         cityto  
TYPE spfli-cityto,
         f3      
TYPE i,
       END OF ty_filter,
       ty_filter_tab
TYPE HASHED TABLE OF ty_filter

                     WITH UNIQUE KEY cityfrom cityto.
DATA: lt_splfi TYPE STANDARD TABLE OF spfli.

SELECT * FROM spfli APPENDING TABLE lt_splfi.

DATA(lt_filter) = VALUE ty_filter_tab( f3 = 2

                          ( cityfrom = 'NEW YORK'  cityto  = 'SAN FRANCISCO' )
             ( cityfrom = 'FRANKFURT' cityto  = 'NEW YORK' )  ).

DATA(lt_myrecs) = FILTER #( lt_splfi IN lt_filter

                                  WHERE cityfrom = cityfrom 

                                    AND cityto = cityto ).

“Output filtered records
LOOP AT lt_myrecs ASSIGNING FIELD-SYMBOL(<ls_rec>).
  WRITE: / <ls_rec>-carrid,8 <ls_rec>-cityfrom,30

           <ls_rec>-cityto,45 <ls_rec>-deptime.

ENDLOOP.

 

Note: using the keyword “EXCEPT” (see definition above) would have returned the exact opposite records i.e all records EXCEPT for those those returned above.


Viewing all articles
Browse latest Browse all 935

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>